The Impact of Precision Tuning on Embedded Systems Performance: A Case Study on Field-Oriented Control

Abstract

Field Oriented Control (FOC) is an industry-standard strategy for controlling induction motors and other kinds of AC-based motors. This control scheme has a very high arithmetic intensity when implemented digitally – in particular it requires the use of trigonometric functions. This requirement contrasts with the necessity of increasing the control step frequency when required, and the minimization of power consumption in applications where conserving battery life is paramount such as drones. However, it also makes FOC well suited for optimization using precision tuning techniques. Therefore, we exploit the state-of-the-art FixM methodology to optimize a miniapp simulating a typical FOC application by applying precision tuning of trigonometric functions. The FixM approach itself was extended in order to implement additional algorithm choices to enable a trade-off between execution time and code size. With the application of FixM on the miniapp, we achieved a speedup up to 278%, at a cost of an error in the output less than 0.1%.

Publication
12th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and 10th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2021)
Daniele Cattaneo
Daniele Cattaneo
Postdoctoral Researcher
Giovanni Agosta
Giovanni Agosta
Associate Professor

Giovanni Agosta, Associate Professor at Politecnico di Milano, holds a Laurea in Computer Engineering (2000) and a PhD in Information Technology (2004). His research focuses on compiler-computer architecture interaction, emphasizing performance, energy-efficiency, and security. He has authored 100+ papers, won multiple awards, and participated in 17 EU-funded projects.