A Meta-Model Assisted Coprocessor Synthesis Framework for Compiler/Architecture Parameters Customization

Abstract

Hardware coprocessors are extensively used in modern heterogeneous systems-on-chip (SoC) designs to provide efficient implementation of application-specific functions. Customized coprocessor synthesis exploits design space exploration to derive Pareto optimal design configurations for a set of targeted metrics. Existing exploration strategies for coprocessor synthesis have been focused on either time consuming iterative scheduling approaches or ad-hoc sampling of the solution space guided by the designer’s experience. In this paper, we introduce a meta-model assisted exploration framework that eliminates the aforementioned drawbacks by using response surface models (RSMs) for generating customized coprocessor architectures. The methodology is based on the construction of analytical delay and area models for predicting the quality of the design points without resorting to costly architectural synthesis procedures. Various RSM techniques are evaluated with respect to their accuracy and convergence. We show that the targeted solution space can be accurately modeled through RSMs, thus enabling a speedup of the overall exploration runtime without compromising the quality of results. Comparative experimental results, over a set of real-life benchmarks, prove the effectiveness of the proposed approach in terms of quality improvements of the design solutions and exploration runtime reductions. An MPEG-2 decoder case study describes how the proposed approach can be exploited for customizing the architecture of two hardware accelerated kernels

Publication
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013
Gianluca Palermo
Gianluca Palermo
Full Professor

Gianluca Palermo received the M.Sc. degree in Electronic Engineering in 2002, and the Ph.D degree in Computer Engineering in 2006 from Politecnico di Milano. He is currently an associate professor at Department of Electronics and Information Technology in the same University. Previously he was also consultant engineer in the Low Power Design Group of AST – STMicroelectronics working on network on-chip and research assistant at the Advanced Learning and Research Institute (ALaRI) of the Università della Svizzera italiana (Switzerland). His research interests include design methodologies and architectures for embedded and HPC systems, focusing on AutoTuning aspects.

Vittorio Zaccaria
Vittorio Zaccaria
Associate Professor

I am an associate professor at Politecnico di Milano and I have worked in embedded processor architecture R&D for one of the top semiconductor companies in the world. My group is currently working on topics related to embedded systems (hardware and software), security, cryptography, operating systems.