Towards Model Simulations in HPC:
a Compiler Perspective

Massimo Fioravanti’ Marina Nikolic
Silvano Seva', Daniele Cattaneo,
Stefano Cherubin*, Federico Terraneof,
Francesco Casella’, Alberto Levaf,
Giovanni Agos’caT

t DEIB, Politecnico di Milano, piazza Leonardo Da Vinci 32, 20133 Milano, Italy 1
* Codeplay Software Limited, Argyle House Level C, EH3 9DR Edinburgh, UK

ABSTRACT

Modelica is a modeling language for performing simulations in multiple engineering do-
mains, which has seen increasing interest in the last decades. However, existing compilers for
this language are not performant enough with respect to both temporal and spatial efficiency to
deliver on the promise of easy enough simulation of modern complex and/or large scale systems.
Last year, we presented a new approach to high-performance system simulation, whose corner-
stone is a new Modelica compiler named MARCO. The basic groundwork for the construction of
this compiler is now complete, and now we are shifting our focus on the formalization of its main
features, and on incrementally expanding its capabilities. We present the challenges we encoun-
tered, and how they related to the peculiarities of the Modelica language with respect to standard
procedural languages such as C.

KEYWORDS: Compilers; LLVM; Modelica; Large-Scale Models; Efficient Simulation; DSL

Introduction

Modelica [EIm78]] is a Domain Specific Language (DSL) tailored for the description and sim-
ulation of cyber-physical systems composed of both digital parts, described as imperative
programs, and analog parts, described by systems of equations, including Differential Alge-
braic Equations (DAE) and Ordinary Differential Equations (ODE) [Fril4]. Modelica takes a
declarative approach to the construction of the simulation, allowing the designer to specify
and compose systems of equations, and then generate an executable code linking to DAE
or ODE solver libraries. In a Modelica compiler, the high-level Modelica code is lowered
to a flat structure in order to resolve the complexity given by component composition. The

'E-mail: {massimo.fioravanti, marina.nikolic}@mail.polimi.it — {silvano.seva, daniele.cattaneo,
francesco.casella, alberto.leva, federico.terraneo, giovanni.agosta}@polimi.it
2E-mail: stefano.cherubin@codeplay.com

10° 10°
, 10”1
10’
10°
86
® 10° R
e [} i
z 2 10
£ =
< 5
10° - 10t -
0
10°
10*
1
T T T 10 T T T
1 2 3 4 5
10 10 10 10 10 1ot 102 10> 10° 10°

number of equations number of equations

Figure 1: Code size (left) and time (right) gains that can be achieved via the LLVM-IR-based
prototype Modelica compiler presented in [AT19].

lowered model, represented as an equation system, is then translated to C code and com-
piled using a standard C compiler. This approach is practical on one hand, because it frees
the Modelica community from the need to develop a full compiler, but causes several lim-
itations, which have been recently highlighted [A™19, [Cas15, P"19]. Compilation times for
large scale models may grow larger than the execution time. Additionally, in the generated
C code large amount of information which was present in the Modelica source code is lost,
and this lost information causes a performance degradation. It is now understood that by
improving the code size and information processing of a Modelica compiler significant per-
formance improvements are achievable. As an example, in Figure[I|we highlight the kind of
improvements that can be achieved.

To address these limitations, we are working towards the construction of a new compiler
for Modelica, named MARCO, based on the LLVM compiler infrastructure [LA04], which aims
at progressively bridging the current gap.

Roadmap

Our development efforts for MARCO are following a roadmap consisting of three tasks. In
the first task, we aim to develop a new backend for compiling the Modelica language to
LLVM-IR. The other two tasks are planned simultaneously to the first, and involve the devel-
opment of front-end related features. Thus, the second task involves the development of a
new Modelica parser and frontend, and the third task the modularization of the algorithms
developed for structural analysis.

From the point of view of a compiler engineer, all the aforementioned components could
be classified as part of the frontend. However, this frontend is much more complex than
the frontend of a standard programming language such as C or C++, because Modelica is a
declarative language. For this reason, depending on the form of the equations in the model
there are several possible solving methods. All of these methods are valid, but only a few
are fast when executed by a computer.

Parsing —— Flattening — Matching — SCC Search —+ SCC Resol. — Scheduling — Lowering

Figure 2: The pipeline stages used by a typical Modelica compiler frontend [CKO6].

MARCO aims to dramatically shift the state of the art in Modelica compilers by exploiting
more complex transformations than existing implementations. These new transformation
aim to preserve data locality and reduce code size by exploiting information already present
in the source code, which is usually discarded.

For example an user can represent a relationship between the items in two different vec-
tors. This can be expressed as a single equation subject to a for-all clause to describe the
iteration across all elements of the vector. This equation is called a vector equation. However,
a traditional Modelica compiler transforms every vector to scalar variables, and the single
vector equation is lowered to as many scalar equations as there are elements in the vector.
MARCO, instead, preserves the concept of vector in its internal representation, allowing more
efficient allocation in memory of the elements of the vector, and enabling the usage of loops
in the generated code to improve code size.

We have now reached a mid-point stage where an initial build of MARCO can compile
simplified flattened Modelica models. Therefore, we now consider MARCO to have reached
an alpha stage of development. Additionally, we have developed the beginnings of a mod-
ular Modelica frontend, which can be easily extended to support additional higher-level
features of the language.

Technical Challenges

As a consequence of our continued development of the MARCO compiler, we uncovered sev-
eral challenges that were not considered before. Indeed, the requirements for the algorithms
employed in each stage of the compiler pipeline — which is shown in Figure 2| — are much
stricter than what is currently found in the state of the art. Therefore, we have developed
new algorithms for use in these stages, which must be formalized and studied to prove their
correctness and computational complexity.

The first algorithm we consider, matching, determines which equation is used to evaluate
each variable. In other words, this step transforms each equation in an expression statement
that can be executed. The matching algorithm used by MARCO ensures that variables gener-
ated by expansion of the same vector are all evaluated by equations with the same structure.

The second algorithm is the Strongly Connected Component Search. This algorithm searches
circular dependencies between equations, and if any are found, it defers solving to an ex-
ternal library. Often, vectors in the model result in well-known patterns in the graph of de-
pendencies of the equations. Therefore, in MARCO we can exploit this information — which
traditionally was not available to this stage.

Finally, we must adapt the scheduling algorithm, which decides the order in which the
equations are evaluated and the values are assigned to the variables. MARCO ensure that,
during scheduling, all variables expanded from the same vector are evaluated sequentially.

Future Developments

Our team is commited to further improve MARCO by completing the development of the
new front-end, and by introducing an interface for external equation solving libraries. Such
interface will be proposed as an open standard.

Additionally, to assess the effectiveness of MARCO, we will employ a new Modelica
benchmark suite, HIPERMOD [ACC™19], which is currently under development. It contains
scalable models specifically crafted to stress the compiler, and especially its capability to ad-
dress large scale models created by the composition of relatively few basic components. This
is a a common case in large scale Modelica models, which typically represent systems such
as power grids or thermal properties of buildings.

Long-term goals include the investigation of parallel computing paradigms as well as
other dynamic compilation techniques [C20].

References

[AT19] Giovanni Agosta et al. Towards a high-performance modelica compiler. In Pro-
ceedings of the 13th International Modelica Conference, Regensburg, Germany, March
4-6, 2019, number 157. Linkdping University Electronic Press, 2019.

[ACC*™19] Giovanni Agosta, Francesco Casella, Stefano Cherubin, Alberto Leva, and Fed-
erico Terraneo. Towards a benchmark suite for high-performance modelica com-
pilers. In International Workshop on Equation-Based Object-Oriented Modeling Lan-
guage and Tools (EOOLT), pages 14, 2019.

[CT20] Stefano Cherubin et al. Dynamic precision autotuning with TAFFO. ACM Trans-
action on Architecture and Code Optimization, 17(2), may 2020.

[Cas15] Francesco Casella. Simulation of large-scale models in modelica: State of the art
and future perspectives. In Proceedings of the 11th International Modelica Confer-
ence, Versailles, France, September 21-23, 2015, volume 0, pages 459-468. Linkoping
University Electronic Press, Linkopings universitet, 2015.

[CKO6] Francois E Cellier and Ernesto Kofman. Continuous system simulation. Springer
Science & Business Media, 2006.

[EIm78] Hilding Elmqvist. A Structured Model Language for Large Continuous Systems. PhD
thesis, 1978.

[Fril4] Peter Fritzson. Principles of object-oriented modeling and simulation with Modelica
3.3: a cyber-physical approach. John Wiley & Sons, 2014.

[LAO4] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004., pages 75-86. IEEE, 2004.

[P+19] Adrian Pop et al. A new openmodelica compiler high performance frontend.
In Proceedings of the 13th International Modelica Conference, Regensburg, Germany,
March 4-6, 2019, number 157, page 10. Linkoping University Electronic Press,
Linkdpings universitet, 2019.

